Von wegen Wasser­stoff führt zu sinkenden Kosten

Am Sonntag (18. Juni 2023) geht es um das Thema Energiewende im Podcast. Und zwar gehen wir der Frage nach, ob es stimmt, dass diese Energiewende technisch kein Problem darstellt. Das wird nämlich von prominenter Seite behauptet. So vom Energieexperten Prof. Dr.-Ing. Michael Sterner von der OTH Regensburg. Dieser schreibt in seinem (heftig beworbenen) Buch und in Artikeln folgendes:

  • „Andererseits gibt es auch erneuerbare Energien, wie die Wasserkraft, Biogasanlagen und Geothermiekraftwerke, die konstant und flexibel zugleich sind. Des Weiteren kommen immer mehr flexible Back-up-Kraftwerke zum Einsatz, die heute noch mit Kohle und Erdgas befeuert werden, zukünftig aber mit erneuerbaren Gasen wie Wasserstoff oder synthetischem Gas ersetzt werden können.“ – bto: Das steht aber im Widerspruch zu der Behauptung, dass das Problem bereits gelöst sei.
  • „Es ist keine Frage der Technik oder der technischen Möglichkeiten, sondern rein eine von politischen Rahmenbedingungen und damit der Wirtschaftlichkeit.“ – bto: Das ist spannend. Die Politik bestimmt die Wirtschaftlichkeit! Das ist ein ökonomisches Wunder. Denn Wirtschaftlichkeit wird vom Markt entschieden.

Seine Forderung: „Es liegt in der Verantwortung von Politik, Wissenschaft, Gesellschaft und Wirtschaft – letztlich an allen –, die Behauptungen kritisch zu hinterfragen, Fakten zu prüfen und vor allem keine Fake News zu verbreiten, sondern den Dialog sachlich und offen zu führen.“ – bto: Und genau das machen wir diese Woche und am Sonntag. Wir schauen mal, wie es um den Wahrheitsgehalt dieser Aussagen steht.

Sterner sagt also, die Technik wäre da und der Staat müsse Wirtschaftlichkeit herstellen. Was nichts anderes bedeutet, als dass der Steuerzahler bezahlt. Die Rechnung ist gigantisch, wie die FINANCIAL TIMES (FT) vorrechnet: „The staggering cost of a green hydrogen economy“.

Ich denke es lohnt, sich die Kernaussagen vor Augen zu führen:

  • Green hydrogen has a seductive appeal. Done right, this zero-emissions energy source has the potential to penetrate many corners of our economies and be instrumental in the fight against climate change. It can be transported over long distances, stored for lengthy periods and some existing fossil fuel infrastructure such as gas pipelines can be adapted to handle it. These attributes help explain the rush of excitement around the gas, also referred to as ‚clean‘ or renewable hydrogen.“ – bto: Besonders bei uns in Deutschland wird uns das immer wieder erzählt.
  • „(…) the green version relies on renewable energy, such as solar or wind power, to split water into hydrogen and oxygen. It creates no carbon during a production process called electrolysis and emits only water when it is burnt.“ – bto: Man kann ihn natürlich auch mit Atomkraft herstellen und das ist ausgesprochen günstig. Frankreich wird das machen und so seinen Kostenvorteil im Energiebereich verfestigen.
  • Some 1,000 new projects globally have been announced to date, requiring total investment of $320bn, according to the Hydrogen Council, an industry body whose members include oil companies such as BP and carmakers like BMW Group. Would-be developers, however, have only committed $29bn so far.“ – bto: Es gibt also eine Diskrepanz zwischen dem was projektiert und dem, was wirklich angegangen wird.
  • „(…) spending (…) lags behind requirements. Lex calculates that a net zero energy system might require 500mn tonnes of hydrogen annually, which would entail some $20tn of investment by 2050. That means we are only about 0.15 per cent of the way there.“ – bto: 20 Billionen Dollar. 20.000 Milliarden Dollar…
  • „(…) why is it needed at all? (…) climate change means that we need to stop using fossil fuels, which account for 80 per cent of global energy usage. The answer, critics say, is to use renewable and low-carbon electricity to power electric vehicles or heat pumps directly. That would be a better bet than going through the rigmarole of using renewable electricity to split water and generate “green” hydrogen, that can then be burnt in boilers.For the most part, that is an accurate representation of the energy transition. Hydrogen is abysmally inefficient.“ – bto: Das ist klar, aber es gibt eben Probleme, in einigen Regionen ausreichend erneuerbaren Strom zu erzeugen (wie in Deutschland!) und Bereiche, in denen es nicht anders geht (Flugverkehr).
  • That still leaves a substantial slice of the energy pie. The International Energy Agency reckons that by 2050 we will use electricity for about 50 per cent of the energy we need, up from 20 per cent today. An estimate from the ETC predicts almost 70 per cent. By those calculations, that leaves 30-50 per cent for other fuels to play for.“ – bto: Vergessen wir nicht, dass der Energieverbrauch weltweit steigen wird.
  • Industries that use non-renewable hydrogen at present, such as fertiliser production, are sure bets for the green version of the fuel — around 50mn tonnes a year by 2050, according to the ETC.“ – bto: Das ist klar.
  • Another big opportunity for hydrogen is in industries that use fossil fuels in their processes today. Hydrogen can be swapped in as a feedstock in chemicals production, for example, and can replace the coal used to heat steelmaking furnaces. The ETC pencils in 120mn tonnes of hydrogen a year for such purposes.“ – bto: Das sind gigantische Mengen und es sind nur 25 Jahre, bis man das erreicht haben will.
  • Long-range transport is also likely to be powered by hydrogen in the future. That is because aircraft, ships and lorries on long journeys need to store a lot of energy on board and batteries are heavy compared with the amount of energy they can hold.“ – bto: Abgesehen von dem mit ihnen verbundenen Energieverbrauch.
  • For long-haul air travel, the idea is to make ‚green‘ jet fuel by taking renewable hydrogen and adding in carbon captured from the air. This synthetic hydrocarbon would emit CO₂ when burnt, but because the carbon comes from the atmosphere in the first place, it would be carbon neutral over its lifecycle.“ – bto: Das wusste ich noch nicht, klingt sehr spannend.
  • Lastly, green hydrogen will be required for energy storage. Batteries do a good job of that, but can go flat if left unused. Long-duration storage — storing summer sun for winter heat, for example — is more difficult. Using surplus renewable energy to make hydrogen and then using that to make electricity is convoluted, but there are not many alternatives for seasonal storage. Pulling this off, however, will depend on how other storage systems develop.“ – bto: Das wird am Sonntag im Podcast diskutiert. Kernergebnis: noch lange nicht in Sicht.
  • Add all of these use cases together and you get the 500mn tonnes of hydrogen needed by 2050 — accounting for more than 10 per cent of the energy mix. That is a ballpark estimate, of course.“ – bto: So weit, so gut, mag man da denken.
  • Making and transporting 500mn tonnes of hydrogen will obviously require a lot of capital and exact numbers are hard to come by as the cost of technologies is expected to fall over time. For an idea of the size of this capital project, however, it is worth dividing hydrogen capex three ways; the cost of renewable electricity needed to make the gas, expenditure on electrolysers used to split water into oxygen and hydrogen and, lastly, the infrastructure — pipelines, ships and storage sites — required to take the hydrogen where it is needed.“ – bto: wir bauen etwas komplett Neues auf. Ich kann mir gut vorstellen, dass die Welt darauf wartet, dass wir das mit viel Steuergeld in Deutschland entwickeln, um dann selbst die Industrien der Zukunft zu besetzen. Vorbild: Photovoltaik – finanziert aus Deutschland, jetzt eine chinesische Industrie.
  • Generating this amount of hydrogen will need almost 25,000TWh of renewable electricity a year, about 100 times the UK’s current electricity demand. On the assumption that solar panels and wind turbines are placed in sunny and blustery areas, we would need 10TW of infrastructure, Lex calculates. At an average cost of $800 per kW, the investment required would be about $8tn.“ – bto: Das sind die ersten 8.000 Milliarden.
  • The second bucket is the electrolysers. Today, inflation has pushed up the price to about $1,500 per kW but it could be as low as $250 per kW by 2050. Using a midpoint of $875 per kW implies a capex requirement of $7tn to achieve the desired goal.“ – bto: Da haben wir die nächsten 7.000 Milliarden.
  • When it comes to infrastructure, the expenditure needed for transport and storage depends on the specific technology. The cheapest option involves pushing hydrogen through repurposed gas pipelines and using repurposed storage sites. Supply chains involving shipping hydrogen transformed into ammonia will be more expensive. Overall, capex may hover at about $5tn.“ – bto: … und die nächsten 5.000 Milliarden.
  • By these calculations, the total outlay would be around $20tn — a hefty number especially if one considers that investment might end up being concentrated in the 2030s and early 2040s. To put it in context, the energy transition as a whole is expected to require about $100tn of capital, according to the ETC.“ – bto: Dieses Geld muss irgendwo herkommen und geht zu Lasten von Konsum oder anderen Investitionen.
  • „(…) the real question for investors, policymakers and consumers is how much the hydrogen generated through this investment might cost — in absolute terms and compared with the fossil fuels that it would replace. The difference is the amount that would need to be filled by subsidies.“ – bto: Jetzt wird es interessant. Wir hören doch immer, dass in der Zukunft wieder alles billiger wird.
  • A simple way of calculating the average cost of hydrogen is to divide the capex by how much hydrogen the kit it buys might produce over its 20-year lifespan. By that reckoning, the average cost for the hydrogen would work out at about $62 per MWh. This really is a rough number. Both investments and energy flows stretch into the future and do not allow for the time value of money. The calculation assumes no operating costs and, most importantly, does not include any return for those putting up the capital.“ – bto: … was nur dann bei Null läge, wenn die Staaten alles finanzieren würden.
  • The second leg of this calculation is no easier considering the price of the fossil fuels hydrogen is set to replace will continue to gyrate. (…) Assuming that natural gas will stabilise at a more reasonable $50 per MWh, that would suggest every unit of hydrogen needs a $12 per MWh subsidy on average. Multiplying that for the whole of the hydrogen produced, we are looking at about $4tn in subsidies.“ – bto: 4.000 Milliarden an Subventionen, nicht schlecht.
  • In Europe and the UK, carbon pricing is already in place. The EU emissions trading system means that those companies using natural gas already pay an additional $20 per MWh for the CO₂ they emit — and that number is expected to rise. It follows that, in these regions, hydrogen will be cheaper than natural gas and the cost of carbon emissions combined. Such back-of-the-envelope maths would suggest the industry should be able to get going without subsidies. Yet that is not the case. As a report by the Hydrogen Council makes clear, the new projects being announced are not matched by a commitment of capital. If hydrogen is both necessary and, over the next 30 years, not much more expensive than fossil fuels, why are things not moving faster?bto: Das ist eine wichtige Frage.
  • “Hydrogen’s problem, today, is threefold. Renewables are not being built at the rate needed to decarbonise electricity, let alone make hydrogen, and their cost has ticked up. Moreover, the few hydrogen projects that do exist are small-scale and piecemeal, representing less than 1 per cent of total hydrogen production over the past three years. That makes the cost of infrastructure, which becomes tolerable when there is a bigger demand, high on a per-unit basis.“ – bto: Das wiederum macht das ganze System teuer.
  • „(…) the cost of hydrogen produced in different regions, suggests that, while some projects manage to come in at $50-$100 per MWh, the cheapest hydrogen in Europe today costs more than $150 per MWh without transport and storage. European natural gas meanwhile is below $32 per MWh.“ – bto: Jetzt kann man sagen, dass man einfach nur Gas verteuern muss. Doch das ändert nichts am massiven Wohlstandsverlust.
  • This means that a serious subsidy push is needed if hydrogen is going to reach the scale required to break even with existing energy sources. Europe and the US are both trying to push the market to its tipping point, in radically different ways. But neither approach is, so far, sufficient to get the ball rolling. The US Inflation Reduction Act throws money at the problem. It offers producers of green hydrogen a tax credit of up to $3 per kg. At this level, the fuel is a bit more expensive than natural gas, but much cheaper than so-called grey hydrogen. For industries already using grey hydrogen, such as refining or ammonia, the switch is a no-brainer. But the trouble with the IRA is that the production credits only last for 10 years. That makes it harder for businesses to have confidence about what the market will look like long-term..“ – bto: So ist das immer mit Subventionen, sie führen zu Verzerrungen und Unsicherheit.
  • „Europe is taking a diametrically opposed approach. Rather than throwing money at production, it is making some hydrogen consumption compulsory. It wants 42 per cent of the hydrogen used in industry to be renewable by 2030. The existing obligations add up to a couple of million tonnes of demand by 2030.“ – bto: Klar, Vorschriften und Verbote.
  • On top of that, the EU has applied a restrictive definition of what constitutes renewable hydrogen. Plugging an electrolyser into the mains will not suffice, because grid electricity may be generated by fossil fuels. To ensure the hydrogen is truly ‚green‘, it must be produced off-grid during the limited periods when there is an excess of renewable electricity. Spreading production across fewer operating hours further raises the cost of hydrogen at the beginning of its development.“ – bto: … weil es zu einer geringeren Auslastung der Anlagen führt.
  • If Europe and the US deliver on their hydrogen pledges, that will help reduce costs for others. Hydrogen has been late to the low-carbon party, but given the right incentives, it has potential to fuel the revelry.“ – bto: Und Deutschland will es wieder für die Welt finanzieren…

20 Billionen Dollar.

ft.com (Anmeldung erforderlich): “Lex in depth: the staggering cost of a green hydrogen economy”, 28. Mai 2023